-~

SMPIE RECOMMENDED PRACTICE

Control Message Avrchitecture

RP 138-1986

SMATE
"~V

. g

1.

General

1.1

1.1.1

1) 1

1.2

Scope. This practice defines the architecture of
the control message language used within a gen-
eral-purpose communications channel of an inter-
face system which transports data and control
signals between equipment utilized in the produc-
tion, post-production, and/or transmission of
visual and aural information.

It is intended that the language described in this
practice be utilized when constructing messages
used as part of an overall system, allowing inter-
connection of programmable and nonprogram-
mable equipment as required to configure an
operational system with a defined function, and
to allow rapid reconfiguration of a system to pro-
vide more than one defined function utilizing a
given group of equipment.

Control message language is composed of vocab-
ulary, syntax, and semantics expressed in terms
of tokens, rules, and actions, respectively.

The primary intent of this practice is to define
the architecture of the messages to be trans-
mitted within the supervisory protocol of the
communications channel for the purpose of con-
trolling equipment by external means. Syntax
is the set of rules which shall be applied to the
vocabulary (tokens) to construct control mes-
sages. (The content of the vocabulary and its
semantics, being specific to the type of generic
equipment, is defined elsewhere.) This practice,
or sections thereof, may be applied to the inter-
connection of elements within an item ol equip-
ment.

Definitions. For the purpose of this practice, the
following definitions shall apply:

Virtual Machine: A logical device consisting of
a single device or a combination of devices that
respond in essence or effect as a generic type of
equipment; e.g., VIR, video switcher, telecine,
etc.

Virtual Circuit: A transparent, logical, com-
munications connection between virtual ma-
chines. The communications path, in reality,
passes through other levels and is propagated
over a physical medium.

9

-

Page I of pages

Message Structure

2.1 Architecture. The message architecture described
in this practice is prepared broadly on the prin-
cipals of communications levels. This architecture
follows a logical structure and is defined in terms
of a virtual machine. Messages are of variable
length according to function. Complex [unctions
may be divided into basic functions, transmitted
as a sequence of shorter messages f[or execution in
the virtual machine.

2.2 Virtual Machine. All messages pertaining to ge-
neric types of equipment shall be defined in terms
of the virtual machine. Utilization of the virtual
machine concept in defining messages provides a
message architecture that is independent of ma-
chine-specific characteristics.

Control Message Classification

3.1 Control messages are classified in accordance with
Fig. 1.

CONTROL
MESSAGES

VIRTUAL
MACHINE
MESSAGES

SYSTEM CoOMMON TYPE USER
SERVICE WECSAGES SPECIFIC DEFINED
MESSAGES MESSAGES MESSAGES

Fig. 1
Message Classification

Copyright © 1986 by the
SOCIETY OF MOTION PICTURE AND TELEVISION ENGINEERS
595 West Hartsdale Avenue, White Plains, NY 10607, (914) 761-1100

Approved 1 May 1986

Page 2 of 4 pages RP 138-1986

3.1.1 Virtual machine messages are used to pass com- - 323 User-Defined Messages: Virtual machine mes-
mands and responses between virtual machines. sages which are unique to the type (manufac-
Virtual machine messages are those initiated by turer, model, version, S/N, etc.) of the specific
a controlling device with responses originating machine. Although the definition and/or docu-
in the controlled device. Receipt of a virtual mentiation of user-defined messages is considered
machine message shall result in a defined action outside the scope of this practice, the structure
and/or response by the virtual machine. of such messages shall conform to the message

; : e architecture as 2 in.
Virtual machine messages may be subdivided Gfdchueiciet
into:
3.1.1.1 Common messages whose coding is reserved to 4. Control Message Construction
provide fo(; [unctu;ns of gc.nerdfl application; 4.1 Syntax. System service and virtual machine mes-
e.g., procedures, reference time functions, and sages are uniformly constructed with the following
reset.

syntax:

3.1.1.2 ’1.“ypc-speac1_ﬁc 'mc‘ssag.cs arclap.phc:}blc to spe- MESSAGE = KEYWORD (+ ARGUMENT)
cific generic categories of equipment.

where the keyword characterizes the function to

be performed and the argument contains the

parameters, where necessary, to perform that

3.1.1.3 User-defined messages implement special func-
tions which are not included in the type-
specific message set.

function.
3.1.2 System-service messages are messages other than]
virtual machine messages. A parameter has the following syntax:
3.2 Virtual Machine Message Subsets. A separate and PARAMETER = (NAME +) VALUE (S)

distinct subset of virtual machine messages shall
be specified for each type of virtual machine
(VIR, telecine, audio tape recorder, graphics
generator, etc.). Said subset, termed a dialect,
shall comprise common messages, type-specific
messages and, optionally, user-defined messages.

The name may be implied with the use of specific
keywords and, in such cases, is therefore not re-
quired. The length and format of the value (or
values) is defined by the name (or implied name).
No restriction is placed on the possible concate-
nation of parameter values.

3.2.1 Common Messages: Resident machine messages
which are in all virtual machine dialects but not
necessarily operative in all virtual machines,
whose coding is reserved to provide for func-
tions of general applications.

4.2 Message Formats. All control messages are formed
as groups of integral bytes. The first byte of each
message shall be the keyword. A keyword specifi-
cation defines the format of its arguments; al-
though no mathematical relationship is intended

3.2.2 Type-Specific Messages: Virtual machine mes- between the bit pattern of the keyword and the
sages which are defined in virtual machine dia- format. Messages are constructed in one of the
lect recommended practices. following formats:

Format 1 DMessage = <Keyword>
Format2 Message = <Keyword> <Parameter List>
where:
< Parameter List> = <Parameter>
or:
< Parameter List> = <Begin> <Parameter Group> <End>
where:
< Parameter Group> = <Parameter>
or:

< Parameter Group> = <Parameter Group> <Parameter>

where:

<Parameter> — < Parameter Value> . .. <Parameter Value>
or:

<Parameter> — < Parameter Name>>

— < Parameter Value> ... <Parameter Value>

The appropriate message format can be selected by means of the decision tree given in Fig. 2.

Page 3 of 4 pages

5.1

St
Li-]

5.2.1 Logical

5. Message Coding

Identical or similar functions on equipment of
differing generic type should be cffected by the
same keyword bit pattern.

Parameter Values. Messages may contain param-
eters as an essential part. All parameters are clas-
sified as follows:

arameter Values. Parameters repre-
senting any abstract function(s) that may be
expressed by a simple binary state of 1 (true) or
0 (false) such as tally on/off or yes/no.

The minimum code length for a single logical
parameter is one byte. Individual logical param-

CONTROL
MESSAGE

KEYWORD

RP 138-1986

eters can be assembled, where applicable, into
groups to form bit-specific bytes for transmission
purposes.

Numerical Parameter Values. Parameters rep-
resenting a numeric value and consisting of the
following:

Unsigned number parameters:
Parameters representing any numeric
without polarity.

value

Signed number parameters:
Parameters representing any numeric
with polarity.

value

KEYWORD

PARAMETER
LIST

PARAMETER PARAMETER | PARAMETER BEGIN | PARAMETER END
VALUE(S) NAME VALUE(S) GROUP
PARAMETER | | PARAMETER | PARAMETER PARAMETER | PARAMETER PARAMETER | PARAMETER | PARAMETER
VALUE(S) NAME VALUE(S) GROUP VALUE(S) GROUP NAME VALUE(S)

I\

RECURSIVE

Fig. 2

Decision Tree

RECURSIVE

Page ¥ of 4 pages

hnd

Time-Code Parameter Values: Time is indicated
as a 4-byte quantity. Parameters répresenting
hours, minutes, scconds, and frames are ex-
pressed in BCD in that order. The Hex *40"-bit
of the frame’s byte will be set to one (1) in
Drop-Frame Compensated Mode. In Nondrop
Frame Uncompensated Mode and all other time
code standards, this bit will be zero (0). In all
standards, the Hex “80"-bit ol the second’s byte
will be set to zero (0) to indicate monochrome
field 1 or color felds 1, 3, 5, or 7. This bit set to
one (1) will indicate monochrome field 2 or
color fields 2, 4, 6, or 8. Unused bits are re-
served and are set to zero (0) until defined.
(See Fig. 3.)

High-Resolution Time Code Parameter Values:
High-resolution time is indicated as a 6-byte
quantity. The first 4 bytes are exactly the same
as time parameter values. The two remaining
bytes express [ractions of frames as a 16-bit
binary unsigned number. (See Fig. 3.)

Literal Parameters are parameters based, in
general, on ASCII characters.

Raw Data Parameters are parameters based on
a [ree-form data stream. Raw data parameters
must provide for byte transparency to the lower
layers. The first byte of a raw data parameter
shall be a byte count.

RP 138-1986

SEC FRAMES

2 1 x D
FIELDMARK DROP FRAME
(COMPENSATED MODE)
TIME PARAMETER FORMAT

/MSB (INDICATES FIELD)

FRAMES 16 BIT
FRACTION

FIELD MARK DROP FRAME
(COMPENSATED MODE)

Fig. 3
High-Resolution Time Parameter Format

L

