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1.1

1.1.1
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1.2

Scope. This practice defines the architecture of
the control message language used within a gen-
eral-purpose communications channel of an inter-
face system which transports data and control
signals between equipment utilized in the produc-
tion, post-production, and/or transmission of
visual and aural information.

It is intended that the language described in this
practice be utilized when constructing messages
used as part of an overall system, allowing inter-
connection of programmable and nonprogram-
mable equipment as required to configure an
operational system with a defined function, and
to allow rapid reconfiguration of a system to pro-
vide more than one defined function utilizing a
given group of equipment.

Control message language is composed of vocab-
ulary, syntax, and semantics expressed in terms
of tokens, rules, and actions, respectively.

The primary intent of this practice is to define
the architecture of the messages to be trans-
mitted within the supervisory protocol of the
communications channel for the purpose of con-
trolling equipment by external means. Syntax
is the set of rules which shall be applied to the
vocabulary (tokens) to construct control mes-
sages. (The content of the vocabulary and its
semantics, being specific to the type of generic
equipment, is defined elsewhere.) This practice,
or sections thereof, may be applied to the inter-
connection of elements within an item ol equip-
ment.

Definitions. For the purpose of this practice, the
following definitions shall apply:

Virtual Machine: A logical device consisting of
a single device or a combination of devices that
respond in essence or effect as a generic type of
equipment; e.g., VIR, video switcher, telecine,
etc.

Virtual Circuit: A transparent, logical, com-
munications connection between virtual ma-
chines. The communications path, in reality,
passes through other levels and is propagated
over a physical medium.
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Message Structure

2.1 Architecture. The message architecture described
in this practice is prepared broadly on the prin-
cipals of communications levels. This architecture
follows a logical structure and is defined in terms
of a virtual machine. Messages are of variable
length according to function. Complex [unctions
may be divided into basic functions, transmitted
as a sequence of shorter messages f[or execution in
the virtual machine.

2.2 Virtual Machine. All messages pertaining to ge-
neric types of equipment shall be defined in terms
of the virtual machine. Utilization of the virtual
machine concept in defining messages provides a
message architecture that is independent of ma-
chine-specific characteristics.

Control Message Classification

3.1 Control messages are classified in accordance with
Fig. 1.
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Message Classification
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3.1.1 Virtual machine messages are used to pass com- - 323 User-Defined Messages: Virtual machine mes-
mands and responses between virtual machines. sages which are unique to the type (manufac-
Virtual machine messages are those initiated by turer, model, version, S/N, etc.) of the specific
a controlling device with responses originating machine. Although the definition and/or docu-
in the controlled device. Receipt of a virtual mentiation of user-defined messages is considered
machine message shall result in a defined action outside the scope of this practice, the structure
and/or response by the virtual machine. of such messages shall conform to the message

; : e architecture as 2 in.
Virtual machine messages may be subdivided Gfdchueiciet
into:
3.1.1.1 Common messages whose coding is reserved to 4. Control Message Construction
provide fo(; [unctu;ns of gc.nerdfl application; 4.1 Syntax. System service and virtual machine mes-
e.g., procedures, reference time functions, and sages are uniformly constructed with the following
reset.

syntax:

3.1.1.2 ’1.“ypc-speac1_ﬁc 'mc‘ssag.cs arclap.phc:}blc to spe- MESSAGE = KEYWORD (+ ARGUMENT)
cific generic categories of equipment.

where the keyword characterizes the function to

be performed and the argument contains the

parameters, where necessary, to perform that

3.1.1.3 User-defined messages implement special func-
tions which are not included in the type-
specific message set.

function.
3.1.2 System-service messages are messages other than ]
virtual machine messages. A parameter has the following syntax:
3.2 Virtual Machine Message Subsets. A separate and PARAMETER = (NAME +) VALUE (S)

distinct subset of virtual machine messages shall
be specified for each type of virtual machine
(VIR, telecine, audio tape recorder, graphics
generator, etc.). Said subset, termed a dialect,
shall comprise common messages, type-specific
messages and, optionally, user-defined messages.

The name may be implied with the use of specific
keywords and, in such cases, is therefore not re-
quired. The length and format of the value (or
values) is defined by the name (or implied name).
No restriction is placed on the possible concate-
nation of parameter values.

3.2.1 Common Messages: Resident machine messages
which are in all virtual machine dialects but not
necessarily operative in all virtual machines,
whose coding is reserved to provide for func-
tions of general applications.

4.2 Message Formats. All control messages are formed
as groups of integral bytes. The first byte of each
message shall be the keyword. A keyword specifi-
cation defines the format of its arguments; al-
though no mathematical relationship is intended

3.2.2 Type-Specific Messages: Virtual machine mes- between the bit pattern of the keyword and the
sages which are defined in virtual machine dia- format. Messages are constructed in one of the
lect recommended practices. following formats:

Format 1 DMessage = <Keyword>
Format2 Message = <Keyword> <Parameter List>
where:
< Parameter List> = <Parameter>
or:
< Parameter List> = <Begin> <Parameter Group> <End>
where:
< Parameter Group> = <Parameter>
or:

< Parameter Group> = <Parameter Group> <Parameter>

where:

<Parameter> — < Parameter Value> . .. <Parameter Value>
or:

<Parameter> — < Parameter Name>>

— < Parameter Value> ... <Parameter Value>

The appropriate message format can be selected by means of the decision tree given in Fig. 2.
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5.2.1 Logical

5. Message Coding

Identical or similar functions on equipment of
differing generic type should be cffected by the
same keyword bit pattern.

Parameter Values. Messages may contain param-
eters as an essential part. All parameters are clas-
sified as follows:

arameter Values. Parameters repre-
senting any abstract function(s) that may be
expressed by a simple binary state of 1 (true) or
0 (false) such as tally on/off or yes/no.

The minimum code length for a single logical
parameter is one byte. Individual logical param-

CONTROL
MESSAGE

KEYWORD
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eters can be assembled, where applicable, into
groups to form bit-specific bytes for transmission
purposes.

Numerical Parameter Values. Parameters rep-
resenting a numeric value and consisting of the
following:

Unsigned number parameters:
Parameters representing any numeric
without polarity.

value

Signed number parameters:
Parameters representing any numeric
with polarity.

value

KEYWORD

PARAMETER
LIST

PARAMETER PARAMETER | PARAMETER BEGIN | PARAMETER END
VALUE(S) NAME VALUE(S) GROUP
PARAMETER | | PARAMETER | PARAMETER PARAMETER | PARAMETER PARAMETER | PARAMETER | PARAMETER
VALUE(S) NAME VALUE(S) GROUP VALUE(S) GROUP NAME VALUE(S)

I\

RECURSIVE

Fig. 2

Decision Tree

RECURSIVE
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Time-Code Parameter Values: Time is indicated
as a 4-byte quantity. Parameters répresenting
hours, minutes, scconds, and frames are ex-
pressed in BCD in that order. The Hex *40"-bit
of the frame’s byte will be set to one (1) in
Drop-Frame Compensated Mode. In Nondrop
Frame Uncompensated Mode and all other time
code standards, this bit will be zero (0). In all
standards, the Hex “80"-bit ol the second’s byte
will be set to zero (0) to indicate monochrome
field 1 or color felds 1, 3, 5, or 7. This bit set to
one (1) will indicate monochrome field 2 or
color fields 2, 4, 6, or 8. Unused bits are re-
served and are set to zero (0) until defined.
(See Fig. 3.)

High-Resolution Time Code Parameter Values:
High-resolution time is indicated as a 6-byte
quantity. The first 4 bytes are exactly the same
as time parameter values. The two remaining
bytes express [ractions of frames as a 16-bit
binary unsigned number. (See Fig. 3.)

Literal Parameters are parameters based, in
general, on ASCII characters.

Raw Data Parameters are parameters based on
a [ree-form data stream. Raw data parameters
must provide for byte transparency to the lower
layers. The first byte of a raw data parameter
shall be a byte count.
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SEC FRAMES

2 1 x D
FIELDMARK DROP FRAME
(COMPENSATED MODE)
TIME PARAMETER FORMAT

/MSB (INDICATES FIELD)

FRAMES 16 BIT
FRACTION

FIELD MARK DROP FRAME
(COMPENSATED MODE)

Fig. 3
High-Resolution Time Parameter Format
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