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I. INTRODUCTION

The purpose of this Applications Bulletin is to intro-
duce the reader to the general problem of group
delay compensation of linear networks. The effects of
group delay distortion on the time domain response
of a linear network are discussed, as well as methods
for producing sharp cutoff filters with linear phase
characteristics. In addition, computer optimization
and equalizer parameters are introduced with the
viewpoint of intelligently specifying cost-effective
equalizers and equalized filters.

It is not the intention of the authors to delve into the
attributes or design of specific communications
systems as they pertain to group delay distortion, but
instead to present guidelines that permit system
designers to specify filters and equalizers to the pre-
sent state of the art.

II. GROUP DELAY AND ITS DEFINITION

The purpose of frequency dependent elements in any
communications system is to provide signal-to-noise
ratio enhancement. This is generally achieved by re-
lating a band limited signal f(t) to its frequency spec-
trum Flw), passing the frequencies contained in Flw),
and rejecting those frequencies not contained in
F(w). Naturally, it is hoped that f(t) can be recovered
with as little distortion as possible. Historically, com-
munications systems have been concerned with voice
transmission; the final receiver being the human ear.
The physiology of the human ear is such that the fre-
quency content of the signal is far more important
than the relative phase of those frequencies. Since
the phase relationship was of minor importance to
the “undistorted” transmission of voice, filters with
sharp cutoff frequencies could be utilized thus limit-
ing noise components without regard to the phase
characteristics of the filter.

The advent and burgeoning of data communications
has altered these basic precepts. We now find that
the phase characteristics of filters is as important as
its amplitude characteristics—sometimes more so.

Communication channels possess phase shift vs. fre-
quency characteristics typified by Figure 1.
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Figure 1. Typical Phase Shift of a Communications
Channel

The slope of the phase characteristic is defined as the
group (or envelope) delay, specifically:

Group Delay = _:—9 = Gqthe derivative of phase.
w

Figure 2 shows the group delay corresponding to the
phase characteristics shown in Figure 1.
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Figure 2. Typical Relative Group Delay of a
Communications Channel



It is the relative difference of the group delay within
the channel that we call group delay distortion. If the
phase shift of a system were linear, the group delay
would be constant and the group delay distortion
would then be zero. (See Figure 3) This, of course,
would be the group delay of an ideal system.
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Figure 3. Phase Shift and Group Delay of an Ideal
System

We can motivate the concept of group delay by the
following considerations: The delay of a sine wave is
given as follows:

if f(t) = cos wyt
then  f(t) (gelayed) = €08 wo(t—ty)

where t,is the delay in time.

Thus, if we consider the problem of passing Flw)
through some transfer function |A(w)|e?® with
minimum distortion, it is apparent that A(w) should
be constant and that 8(w) should be such that the fre-
quency components “line up” exactly as they did in
F(w). That is to say, if one frequency component ex-
periences a delay of t, through A(w), then all of the
frequency components of F(w) must experience the
same delay.

or t, = constant
woto =0,

and 6, must be linear with w,
if woty, =0,

then LA s
Wo

thus 4, is a good measure of constancy of delay over
Wo

a band of frequencies.

This concept of a measure of constant delay over a
band of frequencies is further motivated by the
following considerations:

Assume an amplitude modulated sinewave of the
form:

f(t) = f1(t) cos w,t

where f;(t) has a Fourier Transform F;(w)
Filw) = £t

Also assume that f1(t) is band limited
Filw)=0  foralllw| > Q

If for (wy — Q, wy + Q);|Alw) is constant, and #(w) is
linear, then

Alw) = Alwy), wo — ) < o < o+ ()
and

Blw) = Blay) + 0'(we) (0—we) = wotph (we) + (0 —wg) tgrlw,)
where tpp is phase delay and t,, is group delay.

This network, therefore, acts as an ideal symmetric
band pass filter and the output g(t) is given by:

g(t) = f1(t—tgr) cos wy (E—typ)

where we assume Alw,) = 1

Note that ty, (w—w,) = delay of envelope of fi(t) and
tph = delay of carrier.

In a physical system A(w) and #(w) are not constant
and may not be symmetric. If this variation is small,
then ty, gives the displacement of the center of gra-
vity of the envelope and can be referred to as Group
Delay. Note that we require a relatively narrow band
system. ty(w) gives a measure of the deviation from
linear phase—a specification we can label “variation
of group delay”. (See Figure 4)
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Figure 4. Variation of Group Delay
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Although strictly speaking group delay is not an at-
tribute of low pass filters, it is common practice to
specify variation of group delay for low pass filters as
a measure of phase linearity. This practice has arisen
for good reason.

Firstly, in communications systems, it is common to
mix baseband signals up or down with respect to an
IF frequency. Within the context of the IF frequency
(usually relatively narrow band), group delay is well
defined and the group delay of the low pass filter
adds to group delay of the IF filter, as we will subse-
quently show.

Secondly, it is generally easier and preferable to
equalize IF networks at baseband frequencies.
Since phase is generally lagging, group delay is most
commonly defined as

Gg= —:119 in order to derive a positive number.
®

III. THE ATTRIBUTES OF PHASE
LINEARITY

To demonstrate the beneficial effects of linearizing

phase, we present a simple example:

Consider the step response of a simple RC low pass

filter as shown in Figure 5.

Figure 5. Response of RC Low Pass Filter

The transfer function is given by:

1 1

= = =j tan_lRC
1+jwRC [1+ (wRC)2|% ¢

H(w)

The phase characteristics are given by:

#w)= —tan-1RC

which is clearly nonlinear as a function of w as shown
in Figure 6.

Figure 6. 0(w) = — tan-1 RC

Assuming the above amplitude characteristics but
with linear phase:

1 s
H(@)inear phase = 1+ (wRC)2IZ € ¥

The response to a unit step »j(t) = u(t) is shown in
Figure 7.

Figure 7. Step Response of Linear Phase RC Low
Pass Filter

Note that the phase equalized response is symmetric
and has approximately 5% faster rise time.



For a square wave input, the resultant outputs are
shown in Figure 8.

Figure 8. Effect of Phase Linearity on Square Wave

Linear phase is of course, non physical. However,
good approximations can be made by phase equaliza-
tion. While this simple low pass filter is not one we
would ever choose for a system, it does demonstrate
the importance of linear phase to symmetric, low dis-
tortion signal transmission. Certain generalizations
can be made based on this example.

In general, amplitude variations or bandwidth-limit-
ing introduces symmetric distortion. Thus, if a pulse
is passed through a system with linear phase re-
sponse, the induced distortion does not interfere with
the signal symmetry regardless of the amplitude re-
sponse. Non-linear phase response, however, not only
distorts the signal but distorts it nonsymmetrically —
a condition which severely degrades systems such as
radar, TV, and digital communications.

IV. EFFECTS OF GROUP DELAY
DISTORTION

Here we examine the effects of deviation from phase
linearity on time domain response.

Assuming sinusoidal variation in group delay—a con-
dition which approximates the effects of deviation
from phase linearity of a filter which has been
equalized optimally in the mini-max sense with cons-
tant weighting. The results show that the output sig-
nals deviation from symmetry is proportional to the
amplitude of the variation in group delay.

Let G4 = %I:—wcoschm+ to

where n is an integer and w, is some arbitrary cutoff
frequency and t, is some constant delay

integrating:

#w) = —wt — bsin g;r_rg
C

and Af(w) = — g (einTwlwe — e—jnTwlug)

If Af(w) is small

then e iA#@ =1 — jA(w)
and H(w) = Alw) e-joto (1 + g einrafwg — ..122 einTwlug)

Let h,(t) be the impulse response of the filter assum-
ing perfectly linear phase, then

b nm, b nw
h(t) = h(t) + Eho(t + ;:“) — Eho(t ™ )

as shown in Figure 9.

Figure 9. Impulse Response h(t)

Note the departure from symmetry of the impulse re-
sponse h(t) by virtue of “echos” of h(t).

Also,

b
g(t) = got) — §go(t + z—f) + ggo(t = %)

where g(t) is the output of the filter assuming cons-
tant group delay for some arbitrary input.

2k
Often, more importance is given to equalizing the
region below cutoff and relaxing the specification as f
cutoff frequency is approached and passed. Under T

these conditions, optimization of the equalizer in the
least squares sense with non-constant weighting can
be modelled by assuming variation of group delay of
the following form:

dg nmw
— to, bw cos .

bnw

where < <1 for small distortion;

c



e v )

integrating

bw . NTw bnww nmww
0 =— wty— —= |sin - ——cos

nm

and

Hiah ==ty J1= bw, & inrw/we € —jnmw/we
y 2nw _

= jcu2b2 (e inTwlwg g -—jn‘n'm/wc)]

and

bw, nw nm
gl =g — oo [go(t i+ “’_c) —gglt+ -(-u:)

b2 [ dgot - B L e+ D
2 dt - dt

which gives echos of the derivative of g(t) as well as
echos of g(t).

V. EQUALIZED FILTERS

There are classes of networks whose group delay
variation is extremely small within the network
bandwidth. These networks are characterized by
rounded amplitude characteristics such as Gaussian.

~ In addition to their rather weak amplitude at-

tributes, it must also be remembered that design ta-
bles for these networks are for the low pass case and
that phase characteristics are not transferrable from
the low pass prototype through a band pass transfor-
mation except in special cases.

A general method for generating networks with
linear phase characteristics are arbitrary amplitude
attributes is obviously needed and must utilize non-
minimum phase networks.

The most successful method involves the decomposi-
tion of network attributes into Amplitude and Varia-
tion of Group Delay specifications as shown in Figure
10.

Figure 10. Decomposition of Amplitude and Group
Delay Specifications

If we choose a filter which meets the amplitude
specification from a design table or indeed synthesize
a standard filter such as a low-ripple Tchebbychef,
T(w), we find that the filter meets the amplitude
specification but does not meet the group delay
specification as shown in Figure 11.

Figure 11. Group Delay Does Not Meet Specification



Consider an all-pass network of the following form:

- 2 e .
Blw) = (jw)* - ajw+b

(jw)2 + ajw+ b
Note that
|E(w)| = 1 for all w

df(w)=2tan"1 22
an w an b-—-wz
—df(w) —2alw? + b)

then
dw (w2 - b)2 + a2w?

which has the form of Figure 12:

Figure 12. Group Delay Response of All-Pass
Network

The total area under the group delay curve for an all-
pass network of this form is given by:

—df(w)

o dow = 27

For concatenated linear networks group delay is ad-
ditive:

Alw) =|Glw)]| €%« |H(w)| €ifhl@

| Alw)| €% = |G(w)| |H(w)| €i@glw)+oplw)

~dfa(w) —d i —d
and —_— E(G-g(w) + Op(w) = -a;f?g(m} + agh(m)

= GgofG +GgqofH

By adjusting the parameters a and b and synthesiz-
ing E(w) as a constant impedance network, E(w) can
be concatenated with T(w) to equalize the variation
in group delay without affecting amplitude response.
Thus Group Delay variation can be equalized as
shown in Figure 13, and E(w) is called a Group Delay
Equalizer.

Since all-pass networks can be synthesized as cons-
tant impedance networks, additional “sections” can
be concatenated as follows:

EQUALIZERS:

(iw)z —aj(jw) +b;
Uw)z + a; (jw) +b;

n
E(w) = 7T

i=1

n
0l 2a (w? + by
e : =G
oL dw 2’ (w2 = by)? + a;2w? e
i=1

Note that for n equalization sections there are 2n
parameters. Parameter b controls the frequency of
the peak while parameter a controls the height of the
peak and hence the shape of the curve.

Figure 13. Group Delay Equalization
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Calculation of the required parameters is extremely
difficult as at present

THERE IS NO ANALYTICAL METHOD FOR DETERMINING THE
PARAMETERS

and
GROUP DELAY IS NOT SCALEABLE FROM FREQUENCY TO FRE-
QUENCY.

Each filter requirement must, therefore, be custom
designed. In addition, each equalizer section affects
the group delay curve throughout the frequency
range, which is to say, E(w) cannot be decomposed for
design simplicity—the entire expression must be
evaluated for each parameter variation. Needless to
say, a great deal of experience is required to effec-
tively design equalizers and equalized filters.

To further complicate matters, true all pass networks
cannot be physically synthesized due to parasitic ele-
ments and lossy elements. Therefore, variance from
the theoretical group delay curve is encountered as
well as amplitude variations.

V1. AMPLITUDE RESPONSE OF
EQUALIZERS

In Section V, we derived group delay equalizer sec-
tions whose amplitude characteristics were all-pass.
The physical synthesis of these sections usually takes
the form of a non-ladder structure. The singularities
are in the form of the quadripole shown in Figure 14.

Figure 14. S Plane Representation of All Pass
Network

It is apparent that the all-pass characteristics of the
quadripole depends upon strict symmetry of the
singularities. Physically, the equality of «, and o, de-
pends upon the loss characteristics of the compo-
nents; usually inductors—the higher the Q, the more
«, and «, approximate equality. In addition, the
smaller «, and «, are with respect to w, and w, the
higher the Q requirements. These attributes are
more easily handled by referring to .

Define £ = cos 6,

Referring to Figure 15 which shows the amplitude re-
sponse of an “all-pass” equalizer section

Figure 15. All-Pass Equalizer Section

A, is approximately given by

2~ . 2Q¢ -1
A= 2QEF1 or in dB,A 4g = 20 log 2QE+

where Q refers to the quality factor of the inductors,
L; and Lo used in an all pass, constant impedance
section of the form of Figure 16.

Figure 16. All-Pass Constant Impedance Network

The deviation from true all pass characteristics also
changes the form of the group delay curve and must
be taken into account when designing group
equalizers.

In addition, when utilizing large number of group
delay equalizer sections, amplitude equalization may
also be necessary as the amplitude bumps of peak
deviation A, add in dB.

VII. COMPUTER OPTIMIZATION

Although group delay equalization can be achieved
through hand calculation and trial and error, today’s
requirements dictate the utilization of computer op-
timization programs. These programs can achieve
least squares and/or least pth approximations to the



required group delay specification and can simul-
taneously optimize amplitude parameters as well as
account for parasitic and lossy physical elements. At
COMSTRON e SEG, extremely sharp equalized
filters with group delay equalizers of 40 or more
parameters are regularly designed and produced.
Through the use of computer optimization of
amplitude response, the difficulty of group delay
equalization can also be reduced.

These techniques involve the calculation of
amplitude response parameters to optimize phase
linearity or group delay while maintaining the re-
quired amplitude response. The resulting networks
cannot be arrived at analytically but are superior to
classically synthesized networks.

Historically, the filter designer has utilized analytic
tools to place singularities judiciously. Most often
compromises were made because the lack of com-
putational power and techniques did not permit the
designer. to efficiently place singularities for op-
timum results. The requirements of today’s com-
munication systems are such that the performance
gained through delay equalization and computer op-
timization is an absolute necessity.

VIII. PASSIVE VS. ACTIVE

Although active networks perform reasonably well
up to approximately 100kHz, delay equalizers and
equalized filters are perhaps best synthesized as
passive devices down to approximately 100Hz. This is
especially true for extremely sharp filters with zeroes
of transmission in the stop band, as well as equalizers
with more than a few sections. These networks de-
pend upon extremely accurate placement of
singularities especially in relation to one another.
Active devices are generally synthesized such that
the singularities are independent of one another.
While at first glance this independence appears to be
a virtue, consider what happens should a shift take
place. Since the singularities are independent of one
another, the relative placement can be extremely dis-
torted resulting in severe degradation of the net-
work. For example, consider the case of an equalizer
comprised of many sharp sections as shown in Figure
1.

Figure 17. Equalizer

If one element shifts, the result can be as shown in
Figure 18.

Figure 18. Shift of One Element

Since passive networks are interactive, the relative
placement of the singularities is reasonably
preserved despite a shift of one element. The dis-
astrous effects shown will therefore usually not take
place with a passive equalizer. In addition, passive
networks are more easily temperature compensated
because of the cancelling temperature coefficients of
ferrite materials and capacitors. Resistors do not
have this temperature coefficient attribute.

Below 100Hz active networks are usually dictated be-
cause of the size, weight and lossiness of passive
devices. ’

IX. SPECIFYING EQUALIZERS AND
EQUALIZED FILTERS

Equalizers and Equalized Filters are generally
specificed in terms of the allowable variation in
group delay over a given band. Very often, specifica-
tion is made in terms of an allowable mask for
equalization. For example, see Figure 19.

Figure 19. Group Delay Specification Mask



The curve to be equalized can either be specified in
terms of a graph or as data points. The minimum
number of sections required to equalize a_curve can
be estimated by the area required to fill the curve.
For example, referring to Figure 20 the area required
to fill the curve from 100Hz is approximately 500us x
3kHz x 2 m# = 2 7 (1.5). Since each section can con-
tribute an area of 2 7, a minimum of 1.5 sections is
required just to fill up the required area. In order to
match the curve, additional sections are required so
an estimate of three or four sections is in order
assuming the tolerance required is not stringent.

Gq
e 4‘\ /1.
]
: Frequency
- -
| |
| |
100Hz 3kHz

Figure 20. Area to Fill Group Delay Curve

It is important to understand that the absolute delay
within a circuit cannot be reduced. Equalizers cor-
rect, at a specific point in the circuit, for relative
values of delay distortion across the passband. Fun-
damentally, relative delay distortion is corrected by
adding extra delay to those areas in frequency where
the delay value is low. This effectively flattens the
passband by setting the overall distortion levels
across the band, at the value of the highest delay.
Even though the absolute (total) delay has been in-
creased, distortion due to variation in group delay is
substantially reduced.

The best tolerance to which equalization can gener-
ally be achieved is approximately 1% if the total delay
of the equalizer. This tolerance generally takes the
form of ripples superimposed on constant group
delay. In the above case, the total delay of the
equalizer would be approximately 1000us and the
tolerance would be 10us. In order to achieve this
tolerance, however, many more sections would be re-
quired. The maximum number of sections that gen-
erally can be realistically used is thirty.

It should be remembered that smooth shallow curves
are easier to equalize than bumpy or steep curves.
Wideband equalizers sometimes present added
difficulty because of the large amount of area re-
quired to be filled and the potentially wide range of
component values needed to maintain constant impe-
dance. In addition, good equalization is generally
more important at midband or midchannel than at
band edges. Therefore, equalizer specifications are
usually drawn to be most stringent at mid-band and
relaxed at band edges.
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